
Initiative '24
HOnza Koudelka

About Me

• Co-founder and co-owner of 24U
• FileMaker developer since 1991
• Mad Optimizer
• Achiever of the Impossible…
• Speaking at FileMaker events since 2011
• For more about me see honza.guru

http://honza.guru

Significantly faster calculation engine
5 years ago by HOnza

https://community.claris.com/en/s/profile/0050H00000CLFGjQAP

5 years of performance improvements

• 10 FileMaker version updates will now follow.
• For each update, try to recall:
• Did you notice a significant (and sufficient) improvement

caused by the presented version update?
• Did you have to make changes to your solutions to take

advantage of the new improvement?

FileMaker 19.2.1

• Find queries can now be cancelled
• HTTP/2 provides faster web performance

FileMaker 19.3.1

• Mac version runs natively on Apple silicon
• Windows version uses the Microsoft Edge (Chromium) engine

instead of the Internet Explorer engine in Web Viwer

FileMaker 19.4.1

• Performance improvements for create, read, update, and
delete operations

• WebDirect increases number of stable concurrent web
connections

• WebDirect generating CSS only once when switching layouts or
resizing non-card windows

• For faster SQL queries about fields defined in a FileMaker Pro
file, you can now use the system table named
FileMaker_BaseTableFields rather than the existing
FileMaker_Fields table.

FileMaker 19.5.1

• Summary fields processed on server (under certain conditions)
• Scripting engine memory cache increased to 256 MB
• Layout CSS cached in FileMaker Server
• WebDirect performance with multiple concurrent connections

improved

FileMaker 19.6.1

• WebDirect CSS caching improved
• Transactions

FileMaker 19.6.2

• WebDirect overall load time optimized

FileMaker 20.1.1

• Perform Script on Server with Callback

FileMaker 20.3.1

• Loop script step now includes the Flush option
• Database engine now caches relationships
• Optimized memory allocation for relationship changes
• Account enabled state cached to optimize login performance

FileMaker 21.0.1

• Execute FileMaker Data API now supports write operations
• Windows: Search biox performance improved in Manage

Layouts, Layout mode, and Script Workspace
• WebDirect CSS caching optimized during layout resize
• Database field definitions now cached by FileMaker Server

FileMaker 21.1.1

• Constrain Found Set can be set to ignore indexes
• Externally stored container fields using secure storage can now

opt to store files in fewer folders
• Server-side scripts can now use Perform Script on Server

Have you benefited
from at least one of the improvements?

Do you use calculations?
Will you benefit from all your
calculations becoming faster?

Without having to change a single bit?

FileMaker Calculations
Performance

When a Millisecond Matters

How quickly you can "kill" a solution
with a single "innocent" calculatin?
• Took the "Confident Invoices" starter file from Alexis Allen
• Added one calculation and used it in various places

• Field on a layout
• Conditional formatting
• Record-level privileges
• Sorting

"Innocent" Unstored Calculation
Let ([
t1 = Get (CurrentTimeUTCMicroseconds)
s =

Case (
PaidAmount ≥ TotalAmount and (PaidDate - DateDue) < -2 ; "early" ;
PaidAmount ≥ TotalAmount and (PaidDate - DateDue) ≤ 2 ; "on time" ;
PaidAmount ≥ TotalAmount and (PaidDate - DateDue) > 2 ; "late" ;
DateDue < Get (CurrentDate) ; "overdue" ;
DateDue < (Get (CurrentDate) + 1) ; "due" ;
"pending"
)

;
t2 = Get (CurrentTimeUTCMicroseconds) ;
$$count = $$count + 1 ;
$$time = $$time + t2 - t1
] ; s) Evaluation time

Evaluation count My calculation

Performance Impact (list view with 10 visible records)
Field on layout

Conditional formatting

Limited privileges

Sort by paid status

Limited privileges & Sort

0 15 000 30 000 45 000 60 000

6

5

730

310

10

52

49

390

370

164

14

13

266

147

128

Render Time in milliseconds (LAN)
Render Time in milliseconds (WAN)
Evaluation Count

Single calculation evaluation time

100-200 µs (0,1-0,2 milliseconds)

Learn more in my article
https://24usw.com/millisecond

https://24usw.com/millisecond

Initiative '24
Our endeavor to convince Claris to

make the FileMaker calculation
engine significantly faster

Why? Calculations are everywhere!
• Calculated fields
• Field values auto-enter
• Field validation
• Container field external paths
• Script steps
• Conditional formatting
• Record-level privileges
• Custom menus
• File > Send > Mail menu command
• Records > Replace Field Contents menu

command
• Script trigger parameters
• Hide object when

• Button bars
• Tab control tab names and widths
• Pop-over titles
• Tooltips
• Field placeholders
• Portal filters
• Web Viewers
• Charts
• Plug-ins
• Data Viewer
• Text objects ADDED IN 20.2
• Validation messages ADDED IN 21.1

Reference Benchmark (Math)
// Math test
$mspeed = SetRecursion (
While ([i = 30 ; r = 0] ; i ; [mspeed =
	 While ([j = 0 ; $mresult = 0 ; t = Get (CurrentTimeUTCMicroseconds) + 1000000
] ; Get (CurrentTimeUTCMicroseconds) < t ; [

	 	 a = $mresult + 0,123456 ;
	 	 b = $mresult - 0,987654 ;
	 	 c = $mresult * 0,456789 ;
	 	 d = $mresult / 0,654321 ;
	 	 e = Average (a ; b) ;
	 	 f = Average (c ; d) ;
	 	 $mresult = Sum (Min (e ; f) ; Max (e ; f)) / 2 ;

	 	 j = j + 1] ; j)
	 ; $log = List ($log ; i & ": Math result: " & $mresult ; i & ": Math speed: " & mspeed &
" cycles/second")
	 ; r = Max (mspeed ; r) ; i = i - 1] ; r)
; 100000000) ;

Reference Benchmark (Text)
// Text test
$tspeed = SetRecursion (
While ([i = 30 ; r = 0] ; i ; [tspeed =
	 While ([j = 0 ; $tresult = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ěščřžýáíéúůďťň" ;
 t = Get (CurrentTimeUTCMicroseconds) + 1000000
] ; Get (CurrentTimeUTCMicroseconds) < t ; [

	 	 a = Left ($tresult ; 15) ;
	 	 b = Right ($tresult ; 15) ;
	 	 c = Middle ($tresult ; 16 ; 20) ;
	 	 d = Lower (a) ;
	 	 e = Upper (b) ;
	 	 f = List (e ; d ; c) ;
	 	 $tresult = Substitute (f ; ¶ ; "") ;

	 	 j = j + 1] ; j)
	 ; $log = List ($log ; i & ": Text result: " & $tresult ; i & ": Text speed: " & tspeed &
" cycles/second")
	 ; r = Max (tspeed ; r) ; i = i - 1] ; r)
; 100000000)

Performance Comparison

FileMaker 20

PHP

Python

JavaScript

Cycles per second

0 7 500 000 15 000 000 22 500 000 30 000 000

Math
Text

Workarounds
What can we do now?

Avoid unstored calculations

• Pros:
• No expensive calculations over relationships
• Every result calculated just once
• Faster loading/displaying of data (sometimes)

• Cons:
• Slower commits (more values to save, updating indexes)
• More data to load/store per record

Avoid stored calculations

• Pros:
• Less data to load/store
• Faster commits
• Not calculated until needed
• No load on server when all source data already cached

• Cons:
• Calculations involving related records much slower on client
• Difficult to avoid re-calculating the same value multiple times

Off-load to server

• Pros:
• All data on the same machine -> faster complex calculations
• Client does not have to wait

• Cons:
• More load on server (easy to overload)
• More difficult to debug
• More exceptions to handle

Off-load to later (off-peak)

• Pros:
• Better distribution of sever load
• Processing more changes at once (recalculating less often)

• Cons:
• Not suitable for 24/7 businesses
• Less time slots available for off-peak maintenance
• Users have to wait for the results, often hours

Virtual List (cr. Bruce Robertson)

• Pros:
• More control over data transfers
• Lower load on server
• Great for browsing

• Cons:
• More development time
• Often misunderstood/misimplemented
• Not so great for editing

Local File Editing (cr. Vince Menanno)

• Pros:
• Less data transferred between client and server
• Lower server load to save changes
• Minimum time to keep record locked

• Cons:
• Optimistic (save can fail)
• Far more development time
• Higher developer skills required

Off-load to another technology

• Pros:
• Hundreds or thousands times faster

• Cons:
• More development time
• More difficult server-side
• First step to move away from FileMaker

All have one in common

• Trying to trigger FileMaker calculation engine less often
• Trying to manage where it is triggered (client/server)
• Trying to manage when it is triggered (defer or pre-calculate)
• When a value is needed, we simply do have to calculate it

somewhere, at some time, at least once

What can Claris do?
Make the calculation engine faster

Objections

• We don't want to break existing solutions
• FileMaker's math is made for up to 400 digits precision
• FileMaker text functions are fully Unicode savvy
• It's a lot of work and we're not sure it's worth the investment

My answers

• Nothing have to break
• 1% users who need this do accept the penalty.

Why should the other 99% pay it as well?
• We're here to help
• New features attract new customers, optimization prevents

existing ones from leaving the platform

FileMaker 22 is the first step

Text

Math

Build JSON

Read JSON

Read pre-parsed JSON

Cycles per second

0 100 000 200 000 300 000 400 000

21.1.1
22.0.1.53
22.0.1.60

6% faster

11% faster

135% faster (2.35 times)

1098% faster (11.98 times)

1480% faster (15.8 times)

FileMaker Calculations Faster for Everyone

3640 out of 6620

298 votes (2980 points) to reach target
Vote here Learn why

24usw.com/i2424usw.com/fastcalc

http://24usw.com/i24
http://24usw.com/fastcalc

