
Pre- & Post-Migration 
Data-Transfer & -Manipulation

D
EV

PR
O

D
M

ig
ra

tio
n-

pr
oc

es
s

Stop database 
hosting

Stop database 
hosting

..
copy clones / 
migrate data / 
save new files

..
copy clones / 
migrate data / 
save new files

Send dataSend data
Run 

pre-migration 
script

Run 
pre-migration 

script

Run 
post-migration 

script

Run 
post-migration 

script
Get 'new' dataGet 'new' data

Get dataGet data

Send new dataSend new data

Save clones 
(make backup 

& clones)

Save clones 
(make backup 

& clones)

Stop 
server
Stop 

server

Stop 
server
Stop 

server

Start 
Migration

Start 
Migration

Start 
server
Start 

server

Start 
server
Start 

server
Running 
system

Running 
system

PrePostMigration
Kollaboration



Motivation

With data migration, we are faced with the task of integrating it
into a process with preparation and follow-up.



Motivation

Before the migration
• Data must be prepared (via script).
After the migration
• Data must be post-processed (via script).
• Transfer an entire table contents from the development environment to the

production environment
• Individual data must be transferred from the development environment to the

production environment
• e.g. for newly introduced settings fields

• Data must be set and updated manually after the migration



Process

D
EV

PR
O

D
M

ig
ra

tio
n-

pr
oc

es
s

Stop database 
hosting

Stop database 
hosting

..
copy clones / 
migrate data / 
save new files

..
copy clones / 
migrate data / 
save new files

Send dataSend data
Run 

pre-migration 
script

Run 
pre-migration 

script

Run 
post-migration 

script

Run 
post-migration 

script
Get 'new' dataGet 'new' data

Get dataGet data

Send new dataSend new data

Save clones 
(make backup 

& clones)

Save clones 
(make backup 

& clones)

Stop 
server
Stop 

server

Stop 
server
Stop 

server

Start 
Migration

Start 
Migration

Start 
server
Start 

server

Start 
server
Start 

server
Running 
system

Running 
system

PrePostMigration
Kollaboration



Motivation

• Multiple people can perform the migration.

• All modules have data that needs to be transferred from the development
environment to the production environment.

• The database consists of multiple files, and not all files in the database are
always migrated together.

• Different developers are responsible for different modules (or files).

• => Communication is needed about which files to include in the next migration.

• => Communication is required about what needs to be considered for each file.

• After migration, documentation must be created to show what has happened.



Motivation

 Goals

• Central preparation & execution & documentation

• NO connections between files from development environment
to production environment (and vice versa)!!!

 Implementation

• REST API as a solution approach



Process

D
EV

PR
O

D
M

ig
ra

tio
n-

pr
oc

es
s

Stop database 
hosting

Stop database 
hosting

..
copy clones / 
migrate data / 
save new files

..
copy clones / 
migrate data / 
save new files

Send dataSend data
Run 

pre-migration 
script

Run 
pre-migration 

script

Run 
post-migration 

script

Run 
post-migration 

script
Get 'new' dataGet 'new' data

Get dataGet data

Send new dataSend new data

Save clones 
(make backup 

& clones)

Save clones 
(make backup 

& clones)

Stop 
server
Stop 

server

Stop 
server
Stop 

server

Start 
Migration

Start 
Migration

Start 
server
Start 

server

Start 
server
Start 

server
Running 
system

Running 
system

PrePostMigration
Kollaboration

Goal: 
Automated process for a variable number of files, tables and fields.
Medium-term preparation and documentation of what is to be done during the next migration.
Afterwards: documentation of what has been done.



Implementation / First ideas

Commands
• Execute Script
• Get records / Get data

• Send records / Send data
• Delete records

• Comment (to the outline)

Organisation
• Process

• Pre-Migration
• Post-Migration

• Environment
• Development
• Production

• Item
• File
• Layout (=Table)
• Fieldname
• (Data / Find-Query)

Execution
• Set command on / off

(“To be run on next migration”)
• Sort Order
• Person responsible for the command



Implementation / First ideas

Achieved goal

• Everyone can set for "their" modules which steps should be
carried out before and after a migration.

• This setting can be changed for each migration.

• Migration can be carried out without further consultation.

• Automated process flow.

• Automated documentation of the processes



Implementation / What also was needed

Commands necessary

• Admin API
• Start Data APIs
• Stop Data API

• Client: Script-Call via fmp-Protocoll
• Activate Account with Data API privileges.

• Deactivate Account with Data API privileges

(For saftey reasons the Data API isn‘t always on 
and the accounts for using Data API should be
inactive while not used!)

Commands ‚comfort‘
• Store data to memory

• As JSON in Tool-File
• Get Data from memory

• As JSON in Tool-File
• Display message
• Display message with abort

• (If Function could not be 
executed)

• Pause



Implementation



Examples

Transfer all data of a table from the development environment to
the production environment.



Examples

Transfer certain data records from a table from the development
environment to the production environment



Examples

Transfer content from a field in a table from the development
environment to the production environment.



Examples

Overwrite the content of a field in the production environment with
manual content.



Examples

Start API & Script-calls



Toolbox

Long-term storage of content in the tool

• Writing data to a memory data set from a variable

• Reading data from a memory data set and writing it to a variable

• Delete memory data set



Overwrite table, save some values



"Memory" for test purposes
Before the test

After the test



Prerequisites

Privilege Set & Account



Problems / Considerations

API access to each file requires its own token 

Each API call checks whether the corresponding token exists and 
fetches the new token if necessary. 

( I do not establish a connection at the start of the process, but 
check for each API-call whether a token exists and is valid – see
next point!)



Problems / Considerations

Der API-Zugriff zu jeder Datei benötigt einen eigenen Token 

Jeder API-Aufruf prüft, ob der entsprechende Token vorhanden ist 
und holt gegebenenfalls den neuen Token. 



Problems / Considerations

Token-Timeout   ===   error 1627

• If the process takes a long time, the access tokens become invalid 
what results in error 1627. The old token is then deleted and the
command is repeated (whereby a new token is automatically
retrieved).



Problems / Considerations

Token-‘Timeout‘; error 1627

• Wenn der Prozess lange dauert, werden die Zugriffstoken ungültig. 
Dann wird der alte Token gelöscht und der Befehl wiederholt 
(wobei automatisch ein neuer Token geholt wird). 



Problems / Considerations

Scriptcall via fmp-protocoll

• The called script is written to the script stack and executed after
all running scripts have been processed  The running script loop 
must be canceled and a new call of the script loop must also be
placed on the script stack to continue afterwards.



Problems / Considerations

Scriptaufruf über fmp-Protokoll

• Das aufgerufene Script wird auf den Script-Stack geschrieben und 
ausgeführt, nachdem alle laufenden Scripte abgearbeitet wurden 
Die laufende Scriptschleife muss abgebrochen werden und zur 
Fortsetzung ein erneuter Aufruf der Scriptschleife ebenfalls auf 
den Script-Stack gelegt werden.



Problems / Considerations

Scriptcall via fmp-protocoll

• Calling a script via the fmp protocol cannot return a script result. 
This means that an error must be reported in the called script.



Problems / Considerations

Re-Login via REST

• When calling a script via REST, a re-login is not valid! No error
message is thrown, but the authorizations are not changed.



Problems / Considerations

Scriptcalls via REST

• Scripts that are not part of the set of authorized scripts for REST 
calls can be executed if they have the "Execute with full
permissions" option.



Problems / Considerations

Fieldoptions

• The option “Prohibit modification of
value during data entry" is an 
exclusion criterion for data change / 
data entry via REST.



Last but not least: Security

REST is a convenient way of transferring data from the development
environment to the production environment (and vice versa) and for
automate this process.
But is it also secure?
• We are in a "shielded" environment.
• REST API is only opened for the migration process and then closed

again
• REST accounts are only activated for the migration process and 

otherwise deactivated.



Discussion


