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Motivation

With data migration, we are faced with the task of integrating it
into a process with preparation and follow-up.



Motivation

Before the migration
• Data must be prepared (via script).
After the migration
• Data must be post-processed (via script).
• Transfer an entire table contents from the development environment to the

production environment
• Individual data must be transferred from the development environment to the

production environment
• e.g. for newly introduced settings fields

• Data must be set and updated manually after the migration



Process
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Motivation

• Multiple people can perform the migration.

• All modules have data that needs to be transferred from the development
environment to the production environment.

• The database consists of multiple files, and not all files in the database are
always migrated together.

• Different developers are responsible for different modules (or files).

• => Communication is needed about which files to include in the next migration.

• => Communication is required about what needs to be considered for each file.

• After migration, documentation must be created to show what has happened.



Motivation

 Goals

• Central preparation & execution & documentation

• NO connections between files from development environment
to production environment (and vice versa)!!!

 Implementation

• REST API as a solution approach



Process
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Goal: 
Automated process for a variable number of files, tables and fields.
Medium-term preparation and documentation of what is to be done during the next migration.
Afterwards: documentation of what has been done.



Implementation / First ideas

Commands
• Execute Script
• Get records / Get data

• Send records / Send data
• Delete records

• Comment (to the outline)

Organisation
• Process

• Pre-Migration
• Post-Migration

• Environment
• Development
• Production

• Item
• File
• Layout (=Table)
• Fieldname
• (Data / Find-Query)

Execution
• Set command on / off

(“To be run on next migration”)
• Sort Order
• Person responsible for the command



Implementation / First ideas

Achieved goal

• Everyone can set for "their" modules which steps should be
carried out before and after a migration.

• This setting can be changed for each migration.

• Migration can be carried out without further consultation.

• Automated process flow.

• Automated documentation of the processes



Implementation / What also was needed

Commands necessary

• Admin API
• Start Data APIs
• Stop Data API

• Client: Script-Call via fmp-Protocoll
• Activate Account with Data API privileges.

• Deactivate Account with Data API privileges

(For saftey reasons the Data API isn‘t always on 
and the accounts for using Data API should be
inactive while not used!)

Commands ‚comfort‘
• Store data to memory

• As JSON in Tool-File
• Get Data from memory

• As JSON in Tool-File
• Display message
• Display message with abort

• (If Function could not be 
executed)

• Pause



Implementation



Examples

Transfer all data of a table from the development environment to
the production environment.



Examples

Transfer certain data records from a table from the development
environment to the production environment



Examples

Transfer content from a field in a table from the development
environment to the production environment.



Examples

Overwrite the content of a field in the production environment with
manual content.



Examples

Start API & Script-calls



Toolbox

Long-term storage of content in the tool

• Writing data to a memory data set from a variable

• Reading data from a memory data set and writing it to a variable

• Delete memory data set



Overwrite table, save some values



"Memory" for test purposes
Before the test

After the test



Prerequisites

Privilege Set & Account



Problems / Considerations

API access to each file requires its own token 

Each API call checks whether the corresponding token exists and 
fetches the new token if necessary. 

( I do not establish a connection at the start of the process, but 
check for each API-call whether a token exists and is valid – see
next point!)



Problems / Considerations

Der API-Zugriff zu jeder Datei benötigt einen eigenen Token 

Jeder API-Aufruf prüft, ob der entsprechende Token vorhanden ist 
und holt gegebenenfalls den neuen Token. 



Problems / Considerations

Token-Timeout   ===   error 1627

• If the process takes a long time, the access tokens become invalid 
what results in error 1627. The old token is then deleted and the
command is repeated (whereby a new token is automatically
retrieved).



Problems / Considerations

Token-‘Timeout‘; error 1627

• Wenn der Prozess lange dauert, werden die Zugriffstoken ungültig. 
Dann wird der alte Token gelöscht und der Befehl wiederholt 
(wobei automatisch ein neuer Token geholt wird). 



Problems / Considerations

Scriptcall via fmp-protocoll

• The called script is written to the script stack and executed after
all running scripts have been processed  The running script loop 
must be canceled and a new call of the script loop must also be
placed on the script stack to continue afterwards.



Problems / Considerations

Scriptaufruf über fmp-Protokoll

• Das aufgerufene Script wird auf den Script-Stack geschrieben und 
ausgeführt, nachdem alle laufenden Scripte abgearbeitet wurden 
Die laufende Scriptschleife muss abgebrochen werden und zur 
Fortsetzung ein erneuter Aufruf der Scriptschleife ebenfalls auf 
den Script-Stack gelegt werden.



Problems / Considerations

Scriptcall via fmp-protocoll

• Calling a script via the fmp protocol cannot return a script result. 
This means that an error must be reported in the called script.



Problems / Considerations

Re-Login via REST

• When calling a script via REST, a re-login is not valid! No error
message is thrown, but the authorizations are not changed.



Problems / Considerations

Scriptcalls via REST

• Scripts that are not part of the set of authorized scripts for REST 
calls can be executed if they have the "Execute with full
permissions" option.



Problems / Considerations

Fieldoptions

• The option “Prohibit modification of
value during data entry" is an 
exclusion criterion for data change / 
data entry via REST.



Last but not least: Security

REST is a convenient way of transferring data from the development
environment to the production environment (and vice versa) and for
automate this process.
But is it also secure?
• We are in a "shielded" environment.
• REST API is only opened for the migration process and then closed

again
• REST accounts are only activated for the migration process and 

otherwise deactivated.



Discussion


